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SHORTER COMMUNICATION 

PLANAR RADIATING FLOW BY THE METHOD OF DISCRETE ORDINATES 
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NOMENCLATURE 

weighting coefficient ; 
isentropic speed of sound a, = J(~RT,); 
isothermal speed of sound, aT = ,/(RT,); 
Boltzmamr number, Boj E p,,~,~Ry/(y - 1)~~~~ 
and Bo E yRp,q(y - 1) UT:; 
Bouguer number, Bu = a,a,p; 
differential operator, D, E (--pf~3~p3x~ + a’,); 
radiation intensity at a particular direction; 
averaged radiation intensity; 
Mach number; 
one half of total number of discrete directions; 
also the order of approximation ; 
thermodynamic pressure ; 
Legendre polynomial of 2n order; 
radiation heat flux; 
gas constant; 
diffuse reflectivity of the wall ; 
specular reflectivity of the wall ; 
temperature of the gas; 
wall temperature ; 
time ; 
velocity ; 
isentropic wave operator, W, = a2~/&2 - ai 
a241ax1; 
isothermal wave operator, W, = a2#3tz - a+ 
a24/ax2; 
coordinate ; 
extinction coefficient, a = a, + a,; 
absorption coefficient ; 
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scattering coefficient ; 
dimensionless parameter, 
jj z Bo# - M2,j)/16(1 - yM2,,); 
ratio of specific heats ; 
emissivity of the wall ; 

dimensionless coordinate, nj z a,,x ; 
direction cosine of the angle between the 
direction of propagation of radiation and the 
positive x-axis; 
discrete direction cosine ; 
dimensionless coordinate, r z wx/a, ; 
gas density ; 
Stefan-Boltzmann constant ; 
perturbation velocity potential, u’ = &$/ax, 
pe = -Pm a4jat; 
radian frequency of oscillation ; 

albedo of scattering oj = a,,j/a,j 

Subscript 
co, conditions at infinity. 

Superscript 
disturbed quantities. 

1. INTRODUCTION 

THE ACCURACY of the differential approximation (1) in 
radiative gasdynamics has recently attracted considerable 
attention In a recent paper by Cheng and Leonard [2], it is 
established that, for planar configuration, the error of the 
differential approximation is within 15 per cent for all flow 
and radiative quantities if external radiation is unimportant. 
For problem with external radiation, the error is also within 
15 per cent for all variables except density which is rather 
inaccurate. For problems other than planar configuration, 
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it is known that the error becomes more severe [3]. For this 

reason a number of papers trying to improve the accuracy 

of the differential approximation have recently appeared 

[46]. Although results based on these newly proposed 

methods do show improvements over that of the differential 

approximation for problems of simple geometry. the 

application of these methods to a multi-dimensional con- 
figuration is not straightforward. 

A method which appears promising for treating both of 

the planar and non-planar multidimensional problems in 

radiative gasdynamics when a high degree of accuracy is 

required is that of the discrete-ordinate method. Although 

the application of the method has been limited previously to 

problems in radiation equilibrium [7], neutron transport 

[8], and rarefied gasdynamics [9] with planar or spherical 

symmetric contiguratiots, the extension of the method to 

two-dimensional problems in rarefied gasdynamics has 

recently been discussed by Huang [lo]. 

In this paper we shall discuss the method of discrete 

ordinates within the content of planar radiative gasdynamics. 

We shall obtain analytic solutions based on this method for 

the problems of linearized shock wave and the propagation 

of periodic disturbances where both of the exact and 

approximate solutions have been found [l, 2, 11, 121. 

Numerical results evaluated up to the third approximations 

for both problems are compared with exact solutions. 

2. METHOD OF DISCRETE ORDINATES 

For planar configuration the method of discrete ordinates 

consists in (i) dividing the radiation held (- 1 < 11 < 1) into 

2n streams in the discrete directions pk (k = k 1, f 2, , &n) 

so that the radiation intensity in that particular direction is 

given by I,(u) where I,(Y) G /IY. /ix). and 1111 approxlmattng 

integrals of the form 

I *” 
j fTx, 14 d/c = c 4~ 14. (1) 
-1 P=l, 

by a sum with ak’s denoting the weighting coefficients which 

can be evaluated once for all if the division points nk’s are 

specified (the values of at and ,cx for Gaussian quadrature is 

tabulated in [7]). 

According to equation (1) the average radiation intensity 

and radiation heat flux can be approximated by 

I,(x) = 2x f- 1(x, /c)dhl = 2n f a,l,(x), (2) 
-1 p=*tl 

q(x) = 2n i 1(x, 10 /cd/c = 2~ F a,,~c,l,,(x), (3) 
-I *=*1 

and the radiation transport equation (for an isotropic 
scattering grey gas in local thermodynamic equilibrium) is 

given by 

-t” U,UT4 Pk$ + al,, = ; _I a,,, + __ 
n ’ 

(4) 
p-*1 

where the temperature of the gas is not known a prior in 

radiative gasdynamics and must be determined simultane- 

ously with other conservation equations. 

There are two types of radiative boundary conditions 

which frequently occur in radiative gasdynamics. 

(i) For a semi-infinite expanse of radiating gas occupying 

the positive x-direction with a reflecting wall at x = 0, the 

radiative boundary condition in discrete ordinates is [13] 

lk(o) = &uT:/n + r,lL(O) - 2r, i L,Kb-,a-,. (5) 
p= I 

(k = *1, +2,. .1 *n). 

(ii) For two radiating gases occupying adjacent spaces 

under different conditions with the assumptions that no 

radiation is reflected at the interface and the index of 

refraction is unity, the radiation intensity at the interface is 

continuous. Thus we have 

lk(O+) = I&-), (k = +l, +2,. , *n) (6) 

where O- and O+ denote respectively the conditions im- 

mediately in front of and behind the interface. 

It is evident that equations (3) and (4) with boundary 

condition (5) or (6) plus the conservation equations of mass, 

momentum and energy are a set of equations and boundary 

conditions in purely differential form. 

3. NORMAL SHOCK WAVE 

For the problem of a linearized shock wave located at 

x = 0, the governing equations in discrete ordinate form are 

fijz + aam,T; = ITa.,j 
*” 

c %A, 8uTijp=*l 
(7) 

dlt *” 

/I~X + a,jl;t = y _x a,& + 4aa,,jTijT;jn, 
p-*1 

(k = fl, *2,.... &n) (8) 

with boundary condition given by the linearized form of 
equation (6). that IS 

I;&-) + rrT:,in = I&CO+, + uT4,,m, 

(k= +1,+2,....+n) 

and that the disturbances must vanish at infinity 
The solution of the problem is then given by 

&(a) 
4aT4,, /K 

- i Spn.xeXP(-CjmVjh 
,,,z , 

and 

(k= *1,+2,...,&n) 

F = _, hj,exp(-cj,nj), 

(9) 

(10) 

(11) 
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where _t cim is determined from Equation (19) is obtained by linearizing equation (5) and 
n 

c 

making use of the boundary condition 
Uk p= 

1 - wj - B cim 
dT’ 

1 - &cf 1 - Oj - OjfljCjm’ 
(12) 

2 = wT,Re [B e’“‘]. (20) 
kc; dt 

with non-zero negative root for clnr and non-zero positive The constants A and B in equations (18)-(20) are dimension- 
root for c~,,,. hi,,, and 9jm.k are given by less complex constants assumed to be given. At infinity, it is 

” 

cr 

(1 - wz - w,c,,,&)h, (1 - Wl - W1ClrnPI) 
required that 4 is bounded and I;(x) must vanish. 

111 

(l - %)(l - fikca,) (1 - ‘%)(I - PkClrn) 

The solution of equations (15) and (16) with boundary 

m=1 
conditions (18) and (19) can be shown to be 

4 = ?Re “; k, exp(c,t + iwt), (21) 
Ill=1 

(k = *l, f2,..., +n) (13) and 

and ar; 4aT4 w *+1 

-= 

at 
41 Re 1 F,h exp (CJ f iwt), 

rc 
(14) 

RI=1 

(k= +l, *2,..., +n) (22) 

The disturbed average radiation intensity and radiation where C,,, are the roots with a positive real part determined 
heat flux can be obtained from equations (2) and (3) with the from 
aid of equation (10). 

II 

c aP =l+ 
i&(1 + Ci) 

4 PROPAGATION OF PERIODIC DISTURBANCES 1 - C;p;/Bu’ 16yBu(l + cily) 
(23) 

For the problem of propagation of small disturbances in 
p=l 

a non-scattering radiating gas, the governing equations in and L,,, and Fd are given by 

discrete ordinate form are n+1 

1 W,,, = A, (24) 
i:n m=l 

aws 27wdY - 11 ai;, ~= - E 8% 

at Pm apat+ nR 
p=*1 wTb5) ~(l+~)~l+~,k,~~-l-E:p~,Bu 

and Ill=1 

;{&-&+a,}~;= -yw~, - 2r* 
c 
’ l_;r;p,Bu}&,,=a, 

p=l 
(k= f1,+2,...,*n) (16) (k = 1,2,. , n) (25) 

which can be combined to give (see Appendix for an alterna- 
tive derivation) 

and 

16ya,as .. 
& i D,W,-- 

BO c 
fJ,p; $ ( ;I DkWT) = 0. (17) 

1 1 k=l 

I= I k+l 

F = (1 + G/Y)& 
mk (1 + C,pJBu)’ 

(26) 

The boundary conditions for periodic disturbances are The disturbed pressure, temperature, and density can 

g (0, t) = ? ReA exp (iwt), 

then be found by a suitable differentiation of equation (21) 

(18) 
whereas the disturbed average radiation intensity and 

s radiation heat flux can be obtained from equations (2) and 

and (3) with the aid of equation (22). 

aI; 
dr (0, t) = F Re[Be&] +r,z(O,t) 5. NUMERICAL RESULTS 

Equations (10)-(14) and (21)-(26) were evaluated with 
Gaussian quadrature up to the third approximation 

I 

- 2r, 
c 

S(O, t). 

(n = 3). For the problem of linearized shock wave, the 

i”-Pa-P at 
(19) disturbances in the flow field were computed for the following 

p=l two cases (with Bo, = 10 and y = 1.4): (i) M,, = 1.1, 
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Table 1. Disturbed quantities evaluated in front of and behind the shock located at 1 = 0 

Case 

T’ 

T ml 

l- G 
4oT4,, 

4’ 
UT:, 

T 

T ml 

G 
4aT4,, 

4’ 

UT:, 

v -4.0 0- 0+ 4.0 

1st approx oGO5157 0.04076 -0.01199 - 0+001940 
2nd approx oGl5i73 0.03975 -0.01169 - OGOO3266 
3rd approx 0.005269 0.03950 -0.01162 - OQOO3256 
exact 0005268 0.03923 -0.01154 - OWO3263 

1st approx 0.01875 0.1481 - 0.07428 -0001201 
2nd approx 0.01906 0.1471 - 0.07536 - OGO1894 
3rd approx 0.01905 0.1469 -0.07551 -0W1891 
exact 0.01905 0.1470 - 0.07588 - OGO1894 

1st approx - 0.01292 -0.1021 -0.1022 -0.01652 
2nd approx -0.01321 - 0.09961 - 0.09962 -0GO2781 
3rd approx -0.01320 - 009898 - 0.09899 - 0002773 
exact -0.01319 - 0.09833 - 0.09833 - 0.002779 

1st approx 0.01931 0.1041 0.02962 O@KK)OO5332 
2nd approx 0.0 1899 0.1002 OQ2850 OGf@O4181 
3rd approx 0.01893 0.0997 1 0.02834 OWOO3967 
exact 0.01891 0.09941 0.02827 0GO00407 1 

1st approx 0.09581 0.5167 -0.07971 - oGOOOG1434 
2nd approx 0.09255 0.5213 -0.07518 oQOOo2221 
3rd approx 0.0923 1 0.5226 -0.07381 0QOOO3098 
exact 0.09213 0.5243 - 0.07248 oGOOO3 173 

1st approx -0.05383 - 0.2903 - 0.2902 - OGKW5224 
2nd approx - 0.05292 - 0.2794 - 0.2793 - 0~0004097 
3rd approx - 0.05276 - 0.2778 - 0.2777 -0QOO3888 
exact - 0.05266 - 0.2768 -0.2768 - @0003968 

Table 2. Amplitude of disturbances at the gas-solid interface 

1” 

P, 

P’ 
P, 

T’ 
T, 

4’ 
4uT4, 

G 
16uT4, 

BU 

1st approx 
2nd approx 
3rd approx 
exact 

1st approx 
2nd approx 
3rd approx 
exact 

1 st approx 
2nd approx 
3rd approx 
exact 

1st approx 
2nd approx 
3rd approx 
exact 

1st approx 
2nd approx 
3rd approx 
exact 

A= l,B=O A=O,B=l 

1.0 0.01 1 .o 0.01 

0.8827 0.9992 0.5235 0.03458 
0.8880 0.999 1 0.4900 0.03456 
0.8885 0.9991 0.4868 0.03455 
0.8887 0.9989 0.486 1 0.03402 

08382 0.7147 0.288 1 OQOO4276 
0.8410 0.7147 0.3038 0@005729 
0.8416 0.7147 0.3023 OGOO6633 
0.8420 0.7147 0.3003 OGO1237 

0.06065 0.2850 0.7403 0.03459 
0.06502 @2’849 0.7397 0.03459 
0.06552 0.2849 0.7400 0.03458 
0.06569 0.2847 0.7402 0.03441 

0.08627 0.005699 0.6683 1.1541 
0.08076 0.005696 0.6353 1.0421 
0.08023 0.005694 0.6311 1.0195 
0.08012 0.005611 0.6283 0.9997 

0.03735 0.002467 0.7591 0.5003 
0.03937 0003305 0.7577 0.5003 
0.03920 OGO3327 0.7576 0.5003 
0.03892 0007096 0.7575 0.5004 
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M,, = 09118, WI =o, w2 = 0, (ii) M,, = 1.4, 
M mZ = 0.7397, o1 = 0, w2 = 0.9 whereas for the problem 
of wave propagation, the amplitude of disturbances at the 
gas-solid interface (for a black surface with e = 1) were 
computed for Bu = 1Q and 0.01 with Bo = 3.23 and y = 1.4. 
The results of these calculations along with the exact values 
obtained by Cheng and Leonard [2, 111 are tabulated in 
Tables 1 and 2. It is shown in these tables that the results 
based on the first approximation agree with those of the 
differential approximation with Mark’s boundary condition 
[2, 111, and that results of higher approximations approach 
that of the exact solution. 

6. CONCLUDING REMARKS 

Numerical results accurate to any desired degree of 
accuracy can be achieved by taking more discrete directions 
in the radiation field. In view of the availability of electric 
computers and the convenient form of the method for 
numerical work, the method of discrete ordinates appears 
very attractive when a high degree of accuracy is required. 
The extension of the method to a multi-dimensional radiating 
flow is now in progress. 
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APPENDIX 

Alternative derivation of acoustic equation (17) 
Further insight can be obtained by an alternative deriva- 

tion of equation (17). The exact acoustic equation with 
disturbances generated by a reflecting wall at x = 0 is 
given by (12) 

[s a, W,(x’) E,{a,(x - x’)} dx’ 

0 
m 
n 

+ a, J WAX’) E,{a,(x’ - x,} dx’ 

- ER dT,/dt - 2r,a, J WAX’) E,(a,x’) dx’ &(a,x) 

0 
cc 

+ rsam J WAX’) E,{a,(x’ + x,} dx’ 1 (A. 1) 0 
If we apply equation (1) to the integro-exponential 

function, E,(z), namely, letting 

E,(z)= /~“-~exp(-z/p)dp 
0 

N ~,a~(~~)‘-2CXP(-z/P~), (A.2) 

and substitute equation (A.2) into equation (A.l), the 
resulting equation after 2n differentiation with respect to x 
leads to 

16ya,az ” 
=- 

Bo 1 a, A D~WT, (A.3) 
I=, k=1 

k+l 
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which can easily be rearranged to give equation (17). It = (l/J3y”-* exp [ -(J3)z] and equation (A.3) reduces to 
should be noted that the approximate formula similar to the same equation obtained by Cheng [16]. The discrete 
equation (A.2) with the constants aP and pP determined ordinate method thus gives the approximation, equation 
rather arbitrarily were proposed by various authors [14, 153. (A.2), a new mathematical interpretation and offers the 
For the first approximation equation (A.2) gives E,(z) determination of the constants on a rigorous basis. 


